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Abstract

This paper considers a chaotic microwave
transmitter consisting of a quasi-optical
antenna array. When the coupling strength
between array elements is too small to allow
phase-locking, the antenna arrays exhibit low-

dimensional chaos. These arrays show
potential for use in inexpensive, high-power
and high-speed wireless communication
channels.

Introduction

Quasi-optical oscillator arrays overcome many
of the limitations of traditional power
combining schemes. In these oscillator arrays,
a set of antenna-loaded, single-device
oscillators are fabricated in an array and
coupled together through a transmission line
network. This coupling permits
synchronization through mutual injection
locking. Although oscillator arrays are
typically operated in the phase-locked regime,
we propose that quasi-optical oscillator arrays
are ideal platforms for chaotic communication
systems. When the coupling strength between
array elements is too small to allow phase
locking, the antenna arrays exhibit low-
dimensional chaos.

These chaotic arrays can be used as
transmitters by employing a high speed
microelectronic circuit to control the high
power chaotic array. The free-running power
stage is chaotic as the array ‘switches’ between
various unstable periodic orbits; an infinite
nulmber of unstable periodic states typically
coexist with any chaotic state. Since the
chaotic state is arbitr~ily close to any unstable
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periodic state, a small control perturbation can
cause the (normally chaotic) signal from the
power stage to follow an ‘orbit’ whose sequence
represents the information to be communicated
[1]. The strict separation of the power stage
and the high speed electronics may allow for
the fabrication of inexpensive, high speed
wireless communication channels.

Control and modulation of a chaotic system
requires thorough characterization of the
system dynamics. In this paper, we obtain
measures of the complexity and predictability
of the system’s dynamics. The Lyapunov
exponents and the Kolmogorov-Sinai entropy
are introduced and estimated. As a first step
towards communications with chaotic antenna
arrays, we employ the method of occasional
proportional feedback (OPF) to stabilize the
output of an oscillator array while it is in the
chaotic regime.

Coupled Oscillator Simulations

The theory of coupled microwave oscillators
has been treated in previous work [2], leading
to a set of differential equations for the time
evolution of the amplitude and phase of each
oscillator. For exploring chaotic behavior we
are primarily interested in the case of weak
coupling where the oscillators are unable to
achieve a phase-locked state. In this limit the
amplitude variations are insignificant, and the
dynamics are governed by the phase equations;

i#l

where $i is the phase of the ith oscillator

Bn
output voltage and co and Q are the free- J:
running oscillator frequency and quality
factor, ‘respectively, Not: also that one ~f the
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Figure 1. The far-field power radiated by a four element array. The power is plotted as a
function of the time and as a function of its time derivative. Figure 1 (a), (b) and (c)

correspond to coupling strengths of 0.025, 0.020, and 0.015, respectively.
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phase variables is wbitrary and can be set to
zero; an M-oscillator system has only M-1
degrees of freedom. The ability to
predetermine the number of dynamic variables
in the coupled oscillator systems makes this
system an ideal candidate for chaos control.

The power transmitted by the antenna array is
the natural variable for monitoring chaos in the
coupled oscillators, and can be related to the
parameters in Eq. 1 by a superposition of the
field patterns for the individual antennas. In
addition to the far-field power it is necessary
that we monitor the signal locally for input to
the control circuit. An obvious choice for
local variable is the real part of the impedance
into the antenna array.

In this paper, we use the coupling strength as
the relevant control parameter. High-speed
modulation of the coupling strength may be
accomplished by introducing active elements
in the coupling network of a transmission line
coupled oscillator array. For example,
integration of a FET into the coupling network
would allow us to attenuate the coupling
between neighboring elements simply by
varying the gate bias.

The time series for the radiated power and the
‘phase portrait’ are shown in Fig. 1 for four
values of the coupling strength. The time
series is calculated for a four oscillator array
with a frequency distribution of (9.988, 9.996,
10.004 and 10.012 GHz). For clarity, the 10
GHz carrier frequency has been removed from
the time series data. Figure 2 shows a density
plot of the numerical time series as a function
of the coupling strength; the frequency of
occurence t’or a given derivative of the
radiated power is indicated by brightness.
Three distinct regions can be identified in this
figure. Coupling strengths greater than
~ = ().064 are the phase-locked regime. Below
~ = 0.020 the dynamics appear chaotic. In the

transition regime, the time series is quasi-
periodic, but this periodicity is intermittently
interrupted by large signal bursts. As the
coupling strength is reduced towards the
chaotic regime, the time between bursts
becomes shorter until it is impossible to discern
any clear periodicity. The transition to chaos
does not Follow the familiar period-doubling
rout e to chaos. Similar i ntermittancy
transitions to apparently chaotic behavior have
been observed in fluid transport, heat
convection and chemical reactions.
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Figure 2. The global dynamics of the a four
element coupled oscillator array.

Analysis of Chaotic Time Series

Despite the apparent randomness, chaos refers

to a specific, deterministic type of dynamics.
There are rigid constraints on the predictability
and complexity of a chaotic system’s evolution.

The set of Lyapunov exponents ii provides an

intuitively appealing and yet powerful measure
of sensitivity to initial conditions (SIC) and
dissipation, both of which are required for a

chaotic system. The set of Ai originates from

a linear stability analysis, where the set of
coupled differential equations (Eq. 1) are
approximated by a first order Taylor
expansion. In this approximation, all solutions

are of the form exp(ait), i = 1.. N, where N is

the number of degrees of freedom. If one of
the exponents is larger than O, the distance
between two initially nearby trajectories will
increase exponentially with time in this
direction; this exponential divergence is
responsible for the SIC. The Lyapunov
exponents [3] for the calculated time series are
approximately +2, O and -6 (in units of the
sampling time).

Kolmogorov-Sinai entropy is a second
important measure of the system dynamics.
The entropy represents the rate at which
information is ‘created in the system. Consider
a computer that tracks the state of dynamical
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systems and stores this information in a finite
sMe memory. Two initial states of’ a chaotic
system that are indistinguishable due to the
liml(cd precision t~t’ the memory become
distinguishable as the trajectories diverge due
to SIC. Therefore the amount of information
needed to track a chaotic system is always
increasing; the entropy is positive for a chaotic
system; a periodic system will have an entropy
of zero and a noise-driven system has an
entropy that approaches infinity. The
calculated estimate for the entropy in our
oscillator arrays [4] is 2 (in units of the
sampling time). Note that that the entropy is
approximtite]y equal to the positive Lyapunov
exponent: this is not surprising given the
rclall(~nship between the rate of information
creation and (he sensitivity to intial conditions.

Communication with these oscillator arrays
requires that we control the output power from
the oscillator arrays. Since the entropy was
positive, the array is chaotic and we believe that
there are an infinite number of unstable
periodic orbits that are accessible by small
perturbations on the coupling strength. In
addition, the Lyapunov exponent gives us an
estimate for the frequency of control
perturbations needed to stabilize complex
signal patterns. We have employed the method
of occasional proportional feedback (OPF) [5]
to modulate the coupling strength between
oscillator elements. Modulation of the
oscillator strength by a small fraction of its
‘free-running’ state has been used to stabilize a
periodic oscillation of the radiated power.

Coupled Oscillator Experiments

The complex dynamics of antenna arrays has
also been investigated experimental y.
Preliminary experiments with a three element
and a four element oscillator array demonstrate
complex tiperi(Mic wavet’orms. The oscillators
in the experiments consisted of MESFET
loaded devices that were coupled by a
transmission line network. These oscillators
were used to drive four patch antennas. The
center frequency of the radiation from the
individual antennas and oscillators was
approximately 8 GHz. Figure 3 shows the
power detected by a horn antenna and
digitizing oscilloscope along the broad side
direction of the array. The fluctuations in the
output power are clearly aperiodic. These
preliminary
for chaos in
arrays,

experiments she-w great promise
high tiequenc y coupled oscillator
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Figure 3. The experimental time series for a
three element oscillator array with free-
running frequent y of 8 Ghz.

To summarize, we have characterized the
dynamics of coupled antenna arrays with weak
coupling between oscillator elements. The
array dynamics have been demonstrated to
exhibit chaos. In addition, controlling the
output from these arrays by small control
perturbations indicates the potential of such
oscillator arrays for chaotic communications.
The simplicity of the oscillator model is a good
indication that these results apply to nearly all
oscillator arrays regardless of load device our
coupling geometry. Finally, the experiments
with antenna arrays demonstrate the complex,
aperiodic dynamics predicted by the theory.
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